I. Overview

•

ARM LEGv8 processor is an especial version of ARM processor with the following characteristics:

- 1. Register file: LEGv8 has a 32×64 -bit register file
 - 64-bit data is called a "doubleword"
 - 31 x 64-bit general purpose registers X0 to X30
 - 32-bit data called a "word"
 - 31 x 32-bit general purpose sub-registers W0 to W30
 - X0 X7: procedure arguments/results
 - X8: indirect result location register
 - X9 X15: temporaries
 - X16 X17 (IP0 IP1): may be used by linker as a scratch register, other times as temporary register
 - X18: platform register for platform independent code; otherwise a temporary register
 - X19 X27: saved
 - X28 (SP): stack pointer
 - X29 (FP): frame pointer
 - X30 (LR): link register (return address)
 - XZR (register 31): the constant value 0
- 2. LEGv8 Instruction set:
 - a. LEGv8 R-format Instructions

opcode	Rm	mt	Rn	Rd
11	5	bits	5	5

- opcode: operation code
- Rm: the second register source operand
- shamt: shift amount (00000 for now)
- Rn: the first register source operand
- Rd: the register destination

Example: ADD X9,X20,X21

1112	21	0	20	9
11	5	6	5	5

b. LEGv8 D-format Instructions

opcode	Address	Op2sha	Rn	Rd
11	9	2	5	5

- Load/store instructions, LDUR/STUR
 - Rn: base register
 - address: constant offset from contents of base register (+/- 32 doublewords)
 - Rt: destination (load) or source (store) register number
- c. LEGv8 I-format Instructions

opcode	immediate	Rn	Rd
10	12 bits	5	5

- Immediate instructions
 - Rn: source register
 - Rd: destination register
 - Immediate field is zero-extended
- d. LEGv8 Branch instructions
- Conditional branch: Branch to a labeled instruction if a condition is true. Otherwise, continue sequentially

opcode	address	Rd
8 bits	19 bits	5

- CBZ register, L1
 - if (register == 0) branch to instruction labeled L1;
- CBNZ register, L1
 - if (register != 0) branch to instruction labeled L1;
- Unconditional branch:

opcode	address
6 bits	26 bits

• BL1

- branch unconditionally to instruction labeled L1;
 - Update PC with concatenation of Top 4 bits of old PC
 - 26-bit jump address, plus 00

Example:		SUB	X9,X22,X23
-		CBNZ	X9,Else
		ADD	X19,X20,X21
		В	Exit
	Else:	SUB	X9,X22,x23
	Exit:		

Table 1: LEGv8 Encoding Summary

Name	Fields							Comments
Field size		6 to 11 bits	5 to 10 bits	5 or 4 bits	2 bits	5 bits	5 bits	All LEGv8 instructions are 32 bits long
R-format	R	opcode	Rm shamt		t	Rn	Rd	Arithmetic instruction format
I-format	Ι	opcode	im		Rn	Rd	Immediate format	
D-format	D	opcode	address		op2	Rn	Rt	Data transfer format
B-format	В	opcode			address	Unconditional Branch format		
CB-format	СВ	opcode	address Rt				Conditional Branch format	
IW-format	IW	opcode	immediate Rd					Wide Immediate format

Tabl	e 2: Coi	mpar	ing Inst	ruction f	orma	t of L	LEG	iv8,	MIPS,	and	d ARM	v7		_
		31		1 11	2120	D 5	16	15	0 16	109	D 5	54	D 15	0
	LEGv8		opco	de''		Rm°			Const		Rn°		Rd°	
		31	26	325	2120		16	15	11	10	6	5		0
Register-register	MIPS		Op ⁶	Rs1⁵		Rs2 ⁵	5		Rd⁵	(Const ⁵		Opx ⁶	
		31	2827		20	19	16	15	1211			43	3	0
	ARMv7	Ор	x ⁴	Op ⁸		Rsí	14	F	Rd⁴		Opx ⁸		Rs2'	4
		31			2120				1211	109		54		0
	LEGv8		орсо	de ¹¹			Cons	st ⁹	0	p ²	Rn⁵		Rt⁵	
		31	26	325	2120		16	15						0
Data transfer	MIPS			Rs1 ⁵		Rs2 ⁵	;	10			Const ¹⁶			
						10	- 10							
		31	2827	On ⁸	20	19 Pot	16 14	15	1211		Ca	not12		0
		U Op		Ob		КŞ	1		Ku '		0	list -		
				04.00								- 4		~
	LEGv8	31	opcode ⁸	24 23				Can	-+19			54	Dt5	0
	LLOVO		opcode					COR	sı				T.C.	
		31	26	325	2120		16	15			- 16			0
Branch	MIPS		Op°	Rs1°	_	1px 7R	s2°				Const ¹⁰			
		31	2827	24 23										0
	ARMv7	Ор	x ⁴ C)p ⁴					Const ²	24				
		31	26	25										0
	LEGv8		Op ⁶					(Const ²⁶					
		31	26	825										0
Jump/Call	MIPS		Op ⁶					(Const ²⁶					
		31	2827	24 23										0
	ARMv7	Ор	x ⁴ C)p ⁴					Const ²	24				
	ľ													
					Ор	code		Regi	ster	Con	stant			

Instruction Oncode		Opcode	11-bit opc	ode range	ange Instruction		
mstruction	opcode	Size	Start	End	Format		
В	000101	6	160	191	B - format		
STURB	00111000000	11	448		D - format		
LDURB	00111000010	11	450		D - format		
B.cond	01010100	8	672	679	CB - format		
ORRI	1011001000	10	712	713	I - format		
EORI	1101001000	10	840	841	I - format		
STURH	01111000000	11	960		D - format		
LDURH	01111000010	11	962		D - format		
AND	10001010000	11	1104		R - format		
ADD	10001011000	11	1112		R - format		
ADDI	1001000100	10	1160	1161	I - format		
ANDI	1001001000	10	1168	1169	I - format		
BL	100101	6	1184	1215	B - format		
ORR	10101010000	11	1360		R - format		
ADDS	10101011000	11	1368		R - format		
ADDIS	1011000100	10	1416	1417	l - format		
CBZ	10110100	8	1440	1447	CB - format		
CBNZ	10110101	8	1448	1455	CB - format		
STURW	10111000000	11	1472		D - format		
LDURSW	10111000100	11	1476		D - format		
STXR	11001000000	11	1600		D - format		
LDXR	11001000010	11	1602		D - format		
EOR	11101010000	11	1616		R - format		
SUB	11001011000	11	1624		R - format		
SUBI	1101000100	10	1672	1673	l - format		
MOVZ	110100101	9	1684	1687	IM - format		
LSR	11010011010	11	1690		R - format		
LSL	11010011011	11	1691		R - format		
BR	11010110000	11	1712		R - format		
ANDS	11101010000	11	1872		R - format		
SUBS	11101011000	11	1880		R - format		
SUBIS	1111000100	10	1928	1929	l - format		
ANDIS	1111001000	10	1936	1937	I - format		
MOVK	111100101	9	1940	1943	IM - format		
STUR	11111000000	11	1984		D - format		
LDUR	11111000010	11	1986		D - format		

Table 3: Machine Op-code of LEGv8 instructions

II. Required design documentation

- 1. Register file: With appropriate detail, show the layout of the register file.
- **2.** ALU: You need to show a detailed design of an ALU to support the following instructions:

Table 4: Instruction set for required design

Instruction	Operation	ALU function
LDUR	load register	add
STUR	store register	add
CBZ	Conditional branch on zero	pass input b
CBNZ	Conditional branch on not zero	pass input b
В	Unconditional branch	
R-type	add	add
	subtract	subtract
	AND	AND
	ORR	OR

- **3. Data Path:** Show the data path of each class of instruction as well as the overall data path per Table 4.
 - a. **Control:** Develop the control logic to support your instructions. Gate level design in not necessary. However, functional table needs be very detailed and clear, making it implementable in an FPGA.
- 4. Pipelined Data Path: Show the data path for the pipelined architecture.

Extra Credits (20 Points):

Note: Extra Points are only considered if the processor design is over 80% correct. Either Verilog code or a schematic capture of the ALU is needed. Documentation should include two simulation cases for each ALU operation.

<u>Design Team:</u>

Two students per team is allowed. Only one report submission is needed per team.

Required Documentation and Due Dates

• May 9, 2023 Final report: Only electronic submission via Brightspace Turnitin is accepted.

You should include the following:

- 2. A cover page indicating title of the project, course name and number, date (semester and year), and the name of each group member.
- 3. Table of contents.
- 4. Introduction describing the project for a practicing engineering.
- 5. Design Detailed design as outline in Section II is required. I suggest the following sections:
 - a. Machine code for the instruction set.
 - b. A complete documented design of the ALU. This should be a paper design.
 - c. Detail design of the data-path for the processor. This should be a paper design.
 - d. Function tables of control logic.
- 6. Conclusion (problems encountered, lessons learned, etc.).

Project guidelines:

- Late project is not accepted. If your project is not complete by the due date, you should hand in the incomplete project for a partial credit.
- Final report should be professionally documented. You should use a word processor and a CAD tool to document your work. You may not use existing MIPS diagram from your textbook and add circuitry to it.
- Your report needs to be free of grammatical and spelling errors.
- Your project should reflect your own work. If unreasonable similarities are recognized between the turned in projects, they will receive failing grades.

Applicability for Design Folder:

If your design and report are of acceptable quality, I will sign and mark the report as being acceptable to be included in your graduation design folder. Please note that as part of your graduate requirements, you need at least five design projects in your design folder.

In case, your report does not initially qualify to be included in your design folder, you may address the shortcomings and resubmit it for reconsideration to be included in the design folder. Please note this will not change your grade for the project or the course.